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We introduce Neural Expectation Maximization (N-EM), a novel A differentiable clustering procedure that learns a representation of a
unsupervised framework for representation learning that splits scene composed of primitive object represetations.

images into distinct objects (perceptual grouping) and represent It consists of a spatial mixture model with /X components that are invididual shapes accurately e
each one separately. parametrized by vectors 6 = [0, ..., 0] when they are separated (3, b, f), ~

& Everyimage is modeled as a spatial mixture model with K : : C L even when confronted with the

, o , A non-linear function f (a neural network) computes a distribution o
components, each summarized by a distributed representation 0 over images (factored across pixels) from 6} same shape (b). v A
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& We use generalized EM to jointly infer 1) the assignment of
pixels to components 2) the representations for all components.

_\ymg Shapes (each shape moves in a random direction)

For a fixed function f we can compute a Maximum Likelihood Estimate of @ using generalized
& Theresultis a differentiable clustering procedure that can be Expectation Maximization, which iteratively optimizes the expected data log-likelihood:

trained to recover the constituent objects of a given input. o o
] given inp Q(6,0°%) = P(z|@,°'!) log P(x, z|v))

€ \We apply our framework to synthetic perceptual grouping z A Al al a o al a a al al a s ala Al al A

tasks and empirically verify that it yields the intended behavior.
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Reassign the pixels to each cluster according to the posterior of Z
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€ This approach naturally extends to other domains.

Improve the expected value O of the complete data likelihood by gradient ascent: Z Ly S Sp A % | iy
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& Many high-level real world tasks such as reasoning and physical standard recurrent autoencoder in
interaction require identification and manipulation of ) . : e terms of next-step prediction on

L The unrolled gradient ascent updates form a computational graph that is end-to-end a :
. : . . : . e ying shapes with 3/4/5 shapes.
conceptual entities differentiable. We refer to this trainable procedure as Neural Expectation Maximization.
& A first step towards solving these tasks is the automated | | This highlights the fact that J
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discovery of distributed symbol-like representations.

grouping is useful for

& Therefore we seek to split the input into separate entities next-step prediction.

and represent their information content efficiently, based on
statistical regularities of the data that can be learned in an
unsupervised fashion.

3 Shapes 4 Shapes 5 Shapes

:\ymg MNIST  (each digit moves in a random direction)
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& Here we are concerned with the domain of images where
entities naturally form groups of pixels (objects) that share
mutual information.

& We are therefore interested in learning a perceptual grouping

(or clustering) to recover these entities, and a corresponding By relaxing the structure and converting the above graph into an RNN
structured representation that can later be used in a symbol- we obtain a more powerful version that we call RNN-EM
like fashion.

The statistical regularities required to cluster the pixels of an image into objects are encoded
in the weights of the neural network, which we train to minimize a two part loss function: Temporal coherence provides

D K useful cues about the grouping

L( — > >‘/Yz k log P(ZE‘Z, Zi k‘wz kz) (1 — i, k)DKL[P(.CIjZ)HP(QjZ|¢Z ko 2i k)] of pixels.

Train Test Test Generalization 1 %/—/ ﬁf—/ . -
- =1 k=1 intra-cluster loss inter-cluster loss The learned grouping dynamlcs

K AMI bji. K AMI bji. K AMI .
_#oby B AML 0 #ob KR AMI are stable and generalize

0.969 %+ 0.006 3 0.970 %+ 0.005 3 5 0.972 %+ 0.007 , .. : L
0.097 & 0.001 10T oo (D05 e R The intra-cluster loss maximizes the data log The inter-cluster loss minimizes the expected beyond the sequence-length on

3 3
0.614 + 0.003 5 0.614 + 0.003 3 0.886 + 0.010 likelihood (the same as for EM) and encourages out-of-cluster data log likelihood. It which they were trained.
0.878 £ 0.003 5 0.878 + 0.003 3 JEBL 2 B each cluster to better reconstruct its pixels. encourages each cluster to specialize
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